RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

THIRD YEAR B.A./B.SC. FIFTH SEMESTER (July – December) 2014 Mid-Semester Examination, September 2014

: 15/09/2014 Date

MATHEMATICS (Honours) Paper : V

Time : 2 pm – 4 pm

Full Marks : 50

[Use a separate answer book for each group]

Group – A

(Answer Question No. 1 and any four from the rest)

- Show that the group $(\mathbb{Q}, +)$ can't be expressed as an internal direct product of two nontrivial 1. a) subgroups. [3]
 - b) Can the cyclic group \mathbb{Z}_{12} be expressed as an internal direct product of two proper subgroups? Justify your answer. [3]
 - c) Show that $\mathbb{Z} \times \mathbb{Z}$ is not cyclic.
- 2. Does there exist a nontrivial group homomorphism from $(\mathbb{R}, +)$ to $(\mathbb{Z}, +)$? Justify. [4]
- Let G be a group of order 8 and $x \in G$. If o(x) = 4, prove that $x^2 \in Z(G)$. 3.
- Prove that the only proper subgroup of (\mathbb{R}^*, \bullet) of finite index is $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$, here $\mathbb{R}^* = \mathbb{R} \{0\}$. [4] 4.
- Give an example of an infinite group G such that for each $n \in \mathbb{N}$, $\exists x \in G$ with o(x) = n. 5. [4]
- Let G be an abelian group of order 8. Prove that $\phi: G \to G$ defined by $\phi(x) = x^3 \quad \forall x \in G$ is an 6. isomorphism. [4]
- Let G be a group and $a \in G$. Define $f: G \to G$ by $f(x) = axa^{-1} \forall x \in G$. Prove that f is an 7. automorphism. [4]

<u>Group – B</u>

Answer any three questions : 8.

- a) Define forward difference of a function f. If $\phi_r(x) = (x x_0)(x x_1)...(x x_r)$ where $x_r = x_0 + rh$, r = 0, 1, 2, ..., n, calculate $\Delta^k \phi_r(x)$. Hence or otherwise, obtain Newtons forward interpolation formula without the error term. [2+3]
- b) Establish Newton Cotes' formula for numerical integration. (Error in not necessary). Deduce Simpson's one third rule from the above formula. State the geometrical interpretation of the one third rule. [3+2]
- c) Define numerical differentiation. Establish the numerical differentiation formula based on Lagrange's interpolation. [1+4]
- d) Show that the error in approximating f(x)an interpolating polynomial by is $(x-x_0)(x-x_1)...(x-x_n)\frac{f^{n+1}(\xi)}{|n+1}$, where ξ lies between the smallest and the greatest of the [5] numbers x_0, x_1, \dots, x_n

[3×5]

[4]

[3]

e) Using Euler's modified method, obtain the solution of the differential equation : $\frac{dy}{dx} = x + \sqrt{y}$, y(0) = 1 for the range $0 \le x \le 0.4$ in steps of length 0.2. [5]

[2×5]

 $[2\frac{1}{2}+2\frac{1}{2}]$

- 9. Answer any two questions :
 - a) Let $f:[a,b] \to \mathbb{R}$ be integrable on [a,b] & $F(x) = \int_a^x f(t)dt$, $x \in [a,b]$. Prove that
 - i) F is continuous on [a,b]
 - ii) F is of bounded variation on [a,b]
 - b) Let f:[a,b]→ ℝ be bounded on [a,b]. If f has a finite number of points of discontinuties in [a,b] then show that f is integrable on [a,b]. [5]
 - c) Let $f \in C[0,1]$ and $\int_0^1 f(x)dx = 0 = \int_0^1 xf(x)dx$. Then prove that there exist two distinct point a < bin [0,1] such that f(a) = f(b) = 0. [5]

_____ × _____